Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape).

Identifieur interne : 000690 ( Main/Exploration ); précédent : 000689; suivant : 000691

Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape).

Auteurs : S A Dhekney [États-Unis] ; Z T Li ; M. Dutt ; D J Gray

Source :

RBID : pubmed:18256837

Descripteurs français

English descriptors

Abstract

A method to produce transgenic plants of Vitis rotundifolia was developed. Embryogenic cultures were initiated from leaves of in vitro grown shoot cultures and used as target tissues for Agrobacterium-mediated genetic transformation. A green fluorescent protein/neomycin phosphotransferase II (gfp/nptII) fusion gene that allowed for simultaneous selection of transgenic cells based on GFP fluorescence and kanamycin resistance was used to optimize parameters influencing genetic transformation. It was determined that both proembryonal masses (PEM) and mid-cotyledonary stage somatic embryos (SE) were suitable target tissues for co-cultivation with Agrobacterium as evidenced by transient GFP expression. Kanamycin at 100 mg l(-1) in the culture medium was effective in suppression of non-transformed tissue and permitting the growth and development of transgenic cells, compared to 50 or 75 mg l(-1), which permitted the proliferation of more non-transformed cells. Transgenic plants of "Alachua" and "Carlos" were recovered after secondary somatic embryogenesis from primary SE explants co-cultivated with Agrobacterium. The presence and stable integration of transgenes in transgenic plants was confirmed by PCR and Southern blot hybridization. Transgenic plants exhibited uniform GFP expression in cells of all plant tissues and organs including leaves, stems, roots, inflorescences and the embryo and endosperm of developing berries.

DOI: 10.1007/s00299-008-0512-2
PubMed: 18256837


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape).</title>
<author>
<name sortKey="Dhekney, S A" sort="Dhekney, S A" uniqKey="Dhekney S" first="S A" last="Dhekney">S A Dhekney</name>
<affiliation wicri:level="2">
<nlm:affiliation>Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Z T" sort="Li, Z T" uniqKey="Li Z" first="Z T" last="Li">Z T Li</name>
</author>
<author>
<name sortKey="Dutt, M" sort="Dutt, M" uniqKey="Dutt M" first="M" last="Dutt">M. Dutt</name>
</author>
<author>
<name sortKey="Gray, D J" sort="Gray, D J" uniqKey="Gray D" first="D J" last="Gray">D J Gray</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18256837</idno>
<idno type="pmid">18256837</idno>
<idno type="doi">10.1007/s00299-008-0512-2</idno>
<idno type="wicri:Area/Main/Corpus">000684</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000684</idno>
<idno type="wicri:Area/Main/Curation">000684</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000684</idno>
<idno type="wicri:Area/Main/Exploration">000684</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape).</title>
<author>
<name sortKey="Dhekney, S A" sort="Dhekney, S A" uniqKey="Dhekney S" first="S A" last="Dhekney">S A Dhekney</name>
<affiliation wicri:level="2">
<nlm:affiliation>Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Z T" sort="Li, Z T" uniqKey="Li Z" first="Z T" last="Li">Z T Li</name>
</author>
<author>
<name sortKey="Dutt, M" sort="Dutt, M" uniqKey="Dutt M" first="M" last="Dutt">M. Dutt</name>
</author>
<author>
<name sortKey="Gray, D J" sort="Gray, D J" uniqKey="Gray D" first="D J" last="Gray">D J Gray</name>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="ISSN">0721-7714</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blotting, Southern (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Kanamycin (pharmacology)</term>
<term>Kanamycin Kinase (genetics)</term>
<term>Kanamycin Kinase (metabolism)</term>
<term>Plants, Genetically Modified (drug effects)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Regeneration (drug effects)</term>
<term>Regeneration (genetics)</term>
<term>Regeneration (physiology)</term>
<term>Rhizobium (genetics)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Vitis (cytology)</term>
<term>Vitis (embryology)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules cultivées (MeSH)</term>
<term>Kanamycin kinase (génétique)</term>
<term>Kanamycin kinase (métabolisme)</term>
<term>Kanamycine (pharmacologie)</term>
<term>Rhizobium (génétique)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Régénération (effets des médicaments et des substances chimiques)</term>
<term>Régénération (génétique)</term>
<term>Régénération (physiologie)</term>
<term>Technique de Southern (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Vitis (cytologie)</term>
<term>Vitis (embryologie)</term>
<term>Vitis (génétique)</term>
<term>Végétaux génétiquement modifiés (effets des médicaments et des substances chimiques)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Kanamycin Kinase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Kanamycin Kinase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Kanamycin</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Regeneration</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régénération</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="embryologie" xml:lang="fr">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Regeneration</term>
<term>Rhizobium</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Kanamycin kinase</term>
<term>Rhizobium</term>
<term>Régénération</term>
<term>Vitis</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Kanamycin kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Kanamycine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Régénération</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Regeneration</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Southern</term>
<term>Cells, Cultured</term>
<term>Polymerase Chain Reaction</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Technique de Southern</term>
<term>Transformation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A method to produce transgenic plants of Vitis rotundifolia was developed. Embryogenic cultures were initiated from leaves of in vitro grown shoot cultures and used as target tissues for Agrobacterium-mediated genetic transformation. A green fluorescent protein/neomycin phosphotransferase II (gfp/nptII) fusion gene that allowed for simultaneous selection of transgenic cells based on GFP fluorescence and kanamycin resistance was used to optimize parameters influencing genetic transformation. It was determined that both proembryonal masses (PEM) and mid-cotyledonary stage somatic embryos (SE) were suitable target tissues for co-cultivation with Agrobacterium as evidenced by transient GFP expression. Kanamycin at 100 mg l(-1) in the culture medium was effective in suppression of non-transformed tissue and permitting the growth and development of transgenic cells, compared to 50 or 75 mg l(-1), which permitted the proliferation of more non-transformed cells. Transgenic plants of "Alachua" and "Carlos" were recovered after secondary somatic embryogenesis from primary SE explants co-cultivated with Agrobacterium. The presence and stable integration of transgenes in transgenic plants was confirmed by PCR and Southern blot hybridization. Transgenic plants exhibited uniform GFP expression in cells of all plant tissues and organs including leaves, stems, roots, inflorescences and the embryo and endosperm of developing berries.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18256837</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>09</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0721-7714</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>27</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2008</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape).</ArticleTitle>
<Pagination>
<MedlinePgn>865-72</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-008-0512-2</ELocationID>
<Abstract>
<AbstractText>A method to produce transgenic plants of Vitis rotundifolia was developed. Embryogenic cultures were initiated from leaves of in vitro grown shoot cultures and used as target tissues for Agrobacterium-mediated genetic transformation. A green fluorescent protein/neomycin phosphotransferase II (gfp/nptII) fusion gene that allowed for simultaneous selection of transgenic cells based on GFP fluorescence and kanamycin resistance was used to optimize parameters influencing genetic transformation. It was determined that both proembryonal masses (PEM) and mid-cotyledonary stage somatic embryos (SE) were suitable target tissues for co-cultivation with Agrobacterium as evidenced by transient GFP expression. Kanamycin at 100 mg l(-1) in the culture medium was effective in suppression of non-transformed tissue and permitting the growth and development of transgenic cells, compared to 50 or 75 mg l(-1), which permitted the proliferation of more non-transformed cells. Transgenic plants of "Alachua" and "Carlos" were recovered after secondary somatic embryogenesis from primary SE explants co-cultivated with Agrobacterium. The presence and stable integration of transgenes in transgenic plants was confirmed by PCR and Southern blot hybridization. Transgenic plants exhibited uniform GFP expression in cells of all plant tissues and organs including leaves, stems, roots, inflorescences and the embryo and endosperm of developing berries.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dhekney</LastName>
<ForeName>S A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Z T</ForeName>
<Initials>ZT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dutt</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gray</LastName>
<ForeName>D J</ForeName>
<Initials>DJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>02</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>59-01-8</RegistryNumber>
<NameOfSubstance UI="D007612">Kanamycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.95</RegistryNumber>
<NameOfSubstance UI="D019868">Kanamycin Kinase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015139" MajorTopicYN="N">Blotting, Southern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007612" MajorTopicYN="N">Kanamycin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019868" MajorTopicYN="N">Kanamycin Kinase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012038" MajorTopicYN="N">Regeneration</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2008</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18256837</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-008-0512-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Sci. 2001 Apr;160(5):877-887</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1969 Jan 3;163(3862):85-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17780179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 Jul;90(7):973-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Dec;14(12):2985-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12468722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jun;43(2-3):243-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10999408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1980 Nov;144(2):732-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6253441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 May 30;101(2):239-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1647361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1990 Mar;8(10):586-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1968 Apr;50(1):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5650857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2003 Nov;22(4):252-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12908080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Aug;34(6):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9290643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1996 Mar;15(7):500-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2000 May;130(5):1091-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801903</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Dutt, M" sort="Dutt, M" uniqKey="Dutt M" first="M" last="Dutt">M. Dutt</name>
<name sortKey="Gray, D J" sort="Gray, D J" uniqKey="Gray D" first="D J" last="Gray">D J Gray</name>
<name sortKey="Li, Z T" sort="Li, Z T" uniqKey="Li Z" first="Z T" last="Li">Z T Li</name>
</noCountry>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Dhekney, S A" sort="Dhekney, S A" uniqKey="Dhekney S" first="S A" last="Dhekney">S A Dhekney</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000690 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000690 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18256837
   |texte=   Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18256837" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024